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EQUATION OF STATE OF A DENSE GAS IN A 

QUASICLASSICAL APPROXIMATION 

S. D. Gavrilov UDC 536.71 

We obtain an equation Of state for a dense monatomic gas involving the first 
quantum correction for thermodynamic functions. 

The equilibrium theory of a classical fluid that has been intensively developed in re- 
cent years enables us at present to quantitatively describe the thermodynamic properties of 
a liquid and a dense gas consisting of monatomic particles that interact additively [1-4]. 
Further progress in fluid theory is related to the consideration of quantum and nonadditive 
effects, and also to the nonspherical nature of complex molecules. 

The influence of small quantum effects on the thermodynamic properties of a fluid is 
studied in [5-8]. In [5-7] equations are used that require knowledge of the binary correla- 
tion function (or some integral of it) [6-7] of a classical system which is calculated by 
methods of molecular dynamics or the Monte Carlo method. The necessary calculations are car- 
ried out only for the Lennard-Jones potential (12-6) which does not adequately describe the 
intermolecular interaction and, in addition, does so only for low temperatures (referred to 
the characteristic energy of interaction), which conditions the application of these equa- 
tions only for neon and argon [5-7]. 

The equation obtained by perturbation theory [8] is also valid for high temperatures. It 
has little accuracy, however, which is possibly due to the unsuccessful choice of the inter- 
molecular potential. Another inadequacy in the equation obtained in [8] is the necessity of 
integrating a binary correlation function for the distribution of solid spheres that is given 
in table form for each temperature and density. Since we must solve an interpolation problem 
to obtain thermodynamic functions at a fixed pressure, this equation is practically inapplic- 
able for engine ring calculations. 

i. Presentation of the Quantum Correction for the 
Equation of State at High Temperature 

At temperatures for which we can disregard the nonadditive interactions (shown by the 
example of three-particle interactions) of the monatomic sphericosymmetric neutral particles 
[9, I0], the free energy of the system of N particles contained in volume V takes the follow- 
ing form with accuracy up to the first nonzero quantum correction [ii]: 

h ~ (pNA)~ V 
F = F 1 + ) g(R) V2U (R) R2dR : Fcl  + F u. ( l )  

24~mkT . 
0 

Here  g(R)  = exp [ - - u ( R ) / k T ] y ( R )  i s  t h e  r a d i a l  f u n c t i o n  o f  t h e  c l a s s i c a l  s y s t e m  o f  p a r t i c l e s  
that interact additively with the force--du(R)/dR. 
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Let L(R) = exp [--u(R)/kT]V2u(R)R/kT, and then 

h" (p~)2 V h2(pNA)' V L(R)g(R) RdR = F t .  (2) 
Fqu = 24nm . 24nm 

0 

As shown by Henderson and his colleagues [12, 13], if the forces of interatomic repul- 
sion are sufficiently large (for example, if the potential is stable and regular [14], all 
the realistic potentials characterizing the interaction among the neutral molecules satisfy 
these conditions), then the following approximation is valid for the function L(R): 

L (R) ~ 6 (R --c). 

By s u b s t i t u t i n g  (3) i n t o  t h e  e x p r e s s i o n  f o r  Fqu, we o b t a i n  

F = h 2(PWAI~V s(r)  y(c)c. 
qu 24~rn 

(3) 

(4) 

The quantity S(T) is determined from condition (3) (c > 0), 

s (r )  = ~ L (R) dR. (5) 
6' 

Equa t ion  (4 ) ,  wh ich  y i e l d s  p a r t  of  the  f i r s t  quantum c o r r e c t i o n  f o r  the  f r e e  energy of the  
f l u i d ,  i s  no t  c l osed ,  s i nce  d iamete r  c remains undetermined.  

2. The Kim Method 

Kim [15] expands L(R) in series in derivatives of a delta-function. 
y(R)R in Taylor series [15] in the neighborhood of c, we have 

After expanding 

E d "[Ry(R)] R-~i F~ = L (R)  ( R  - -  c) n d R ,  (6) 
n! d R  ~ 

n=0 

where c is still not determined. The zero approximation (n = 0) for Fqu ' (6) agrees with the 
approximation of Henderson [4]. After we set one of the terms of series (6) equal to zero, 
we can determine diameter Cn+~ [which, generally speaking, is not equal to c for the arbitrary 
potential u(R)]. 

In particular, we require that the first term (n = i) of series (6) equal zero [requir- 
ing the agreement of the free energy of the system of particles interacting with the potential 
u(R) and of the system of solid spheres with diameter c2] and thus we obtain 

The Kim method leads to a closed equation of state; however, if function y(R)R has more than 
six arbitrary constants in R, then integral (6) is expanded. The exact form of function y(R) is un- 
known [i, 3]; in the Perkus--Ievik approximation it is a polynomial of the third degree in R, 
and in contrast to the nonrelativistic classical case, series (6) converges in this approxi- 
mation, although its leading terms are not necessarily small. 

The convergence occurs more quickly if we apply the Kim method only to the repulsing 
part of the intermolecular potential [16]. We represent the intermolecular potential as a 
sum of the potentials corresponding to the repulsion and attraction forces: 

u. (R) = uo (R) + u, (R), 

u,.(R) ={u(R)' R-<~', { O, R%a', 
O, R>~", ua(R)= u(R), R>~', 

(8) 
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Fig. I. Dependence of the effective diameter of solid 
spheres on reduced temperature: a) for a semiclassical 
case; b) for a classical case. I) Calculation according 
to Eq. (i8). The effective diameters are determined by 
virial coefficients and their first quantum corrections 
for the Lennard-Jones potential (12-6); 2,3,4,5) second, 
third, fourth, and fifth virial coefficients, respective- 
ly. 

where o' is a still undetermined parameter of division. Thus, for F1weobtain (an 
(X) ]/dxn I x= z 

= d n [xy" 

(9) 

The subscripts r and ~ in function L(R)denote that the function is taken for the poten- 
tials ur(R) and ua(R). We now determine o' from the condition that in zero approximation 
the interaction is determined exclusively by the repulsing part of the potential, i.e., 

J~,o = i L (R) dR = O, (lO) 
O" 

and c is determined from the condition that in the zero approximation (JI,1 
C v correction for the free energy of the solid sphere system with diameter = 

real system: 

0 r 0 p 

& = .( L (R) R~R/,[ L (R) ~R. 
0 0 

= 0) the quantum 
agrees with the 

( l l )  

As the numerical calculations show, o' = rm, where r m is the coordinate of the minimum poten- 
tial. At the limit o' + ~ (the step potential of repulsion), Eq. (ii) transforms to the Kim 
result (7). 

If in Eq. (9), as in the classical case [16], we limit ourselves to inclusion of the forces 
of attraction in the quantum correction for only the second virial coefficient (the term 
J2,1), then the quasiclassical part of the equation of state is represented as 

~ i & -- g(6) & .[ L (R) aR + L (m R d R .  (12) 
0 I]' 
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Here we take into account that the terms J1,n, n > 1 are considerably less than J1,o and 
Ji,1 = 0 because of (ii). 

3. Correct Choice of the Diameter of the Solid Spheres 

We study an alternative choice of diameter c in Eq. (4). A Part of the first quantum 
correction can be written in the equation of state in virial form [17] 

PRooTP ,~ = A*2 Zj=2 BT,i (V*) (pbo)i-~ , (13) 

where A* = h/(me)I/a/o is a de Bura parameter; e and o are parameters of the analytic inter- 
molecular potential u(R); u(o) = 0, e lu(rm) l bo =/ ~ 3 = , = a NAG ; T* = kT/e is the reduced 
temperature. 

The virial series for the solid spheres with diameter c* (4) (c* = c/o) is 

P A*2S * (T*) (l - -  1) b7 c *'a'~-~) (pbo) y-l ,  (14) 

where S*(T*) is the function introduced by Eq. (5) in dimensionless form. Aftez secci[~g 
equal the coefficients of series (13) and (14) having equal powers, we obtain the equations 
of the temperature dependence for the diameter of the solid spheres cj*(T*) for each virial 
coefficient: 

B~,I (T*) = (] - -  1) S* (r*) b 7 c~ (3i-~) 
(4~) ~ T* " (15) 

The dependence of cj* on the reduced temperature is shown in Fig. la. In our calcula- 
tions we use the data for the first quantum correction for the virial coefficients of the 
Lennard-Jones potential (12-6) from [17, 18]. 

The equivalency condition of Eqs. (2) and (4) (it is assumed that expansions (13) and 
(14) converge correctly; see [14]) is as follows: 

c~(T*)=~(T*) ;  j, k = 2 ,  3 . . . . .  (16) 

As we see from Fig. la, this condition is satisfied for the leading virial coefficients T*~ 
15, because at high temperatures the repulsion forces for many-particle collisions are 
dominating, and so the exact satisfaction of condition (16) increases with an increase of 
the temperature and of the virial coefficient. 

The effect of the attraction forces on the first quantum correction for the second viri- 
al coefficient is considerable in the entire temperature range, and condition (16) is only 
satisfied asymptotically for ca*(T*). 

We note that the behavior of functions cj*(T*) is completely equivalent (Fig. ib) to 
the temperature dependence of the classical diameters of the solid spheres aj*(T*) [19] that 
are defined by the equations 

SJ (T*) = i = 2, 3, . . . .  ( 1 7 )  

At high temperature, aj*(T*) agrees with the diameter calculated according to the Barker-- 
Henderson formula [20] 

a * - -  
o okT , kT dR (18) 

0 

presented in Fig. i. The diameters cj* and aj*, starting from j = 3, converge when the tem- 
perature and the number of the virial coefficient increase; they agree if u(R) is a step 
potential of repulsion [12]. 
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Fig. 2. Dependence of the compressibility coefficient for 
helium at low (a) and high (b) temperatures on pressure, 
bars: 1) calculation according to Eq. (21); 2) according 
to classicalequation (20); experimental data: 3) accord- 
ing to [23]; 4) according to [24-26]; 5) according to [27]; 
6) according to [28]; 7) according to [29] (unsmoothed data). 

We can sometimes interpret a,(T*) [16] as the "effective" diameter of the solid spheres, 
though we cannot call c*(T*) the "quasiclassicalZy effective" diameter, since this assumes 
the validity of the equation c*(T*) = a*(T*) + 2-3/21 [21], where i = h/(2wmkT) ~/: is the 
heat wavelength. Actually, as we see from Fig. i, cj*(T*) < ~j*(T*) for j > 2. 

The equation for the diameter of the solid spheres that is determined from the first 
quantum correction for the second virial coefficient 

c: = (4n) 2 T'B;,2 (T*)/S* (T*) (19) 

i s  e q u i v a l e n t  to  t h e  d i m e n s i o n l e s s  e q u a t i o n  f o r  c2 (7 ) .  Thus t h e  f l u i d  c o m p r e s s i b i l i t y  and 
a l l  t h e  v i r i a l  c o e f f i c i e n t s  c a l c u l a t e d  by t h e  d i a m e t e r  of  t h e  s o l i d  s p h e r e s  t h a t  i s  o b t a i n e d  
a c c o r d i n g  to  t h e  Kim method [15] w i l l  be e x c e s s i v e .  The d i a m e t e r  c2 '  t h a t  i s  d e t e r m i n e d  by 
(11) y i e l d s  even more e x c e s s i v e  r e s u l t s .  

4. The Equation of State 

The classical equation of state for high temperatures can be approximated by the equa- 
tion of state of the solid spheres with diameter a that depends on the temperature, with the 
inclusion of the attraction forces into the second virial coefficient taken into account 
[16, 19]: 

Zel = Zel~,sph(~ ) - -  4~ -~ B~Pbo, (20) 

q = WONAa3/6, where a is given by Eq. (18). 

As we already noted, the diameters of the solid spheres c.*(T*), j > 2 agree with aj*(T*) 
for high temperatures, so in our calculations we can assume that cj*(T*) = a*(T~.), j > 2. 
Thus, 

= { [ ~ ~ ---5-~B:+ ) 4~] +BI,2Pbo}, (21) +A.~ S*(T*) 5 a 5 " 4 * 
Z Zcl (4~a*) 2 T* Zclaol~p~) 1 - -  

where we use the equation of state for Zcl.sol.sph(~) that was obtained in [16]. 

The equation of state (21) is used to calculate the compressibility coefficient for 
helium in a broad rafige of temperatures and pressures. It is known that the Lennard-Jones 
potential (12-16) is inadequate for helium (see [22]). Thus the temperature dependence of 
the force constants is assumed in the study. This dependence is found from the agreement of 
the data on the second virial coefficient with the viscosity of the helium [22]; within the 
margins of error for determining the force constants the dependence is described by the equa- 
tions 

a =  2.5912--4.1511.10-n.T, 

e/k = ] 0 . 5 0 0 -  2.5863. IO-~.T. (22) 
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The calculated and the experimental values [23-29] of the compressibility coefficient 
for helium are compared in Fig. 2a, b. The calculated values are somewhat excessive for tem- 
peratures less than 100~ a fact explained by the approximation of the third virial coeffi- 
cient by the virial coefficient for the system of solid spheres (see Fig. Ib) and also by 
the neglect of the second quantum correction for the equation of state. The data in [29] 
(Fig. 2b) for measurably high pressures are excessive in comparison with both the calculated 
and experimental data of [27] that are confirmed by experiments recently conducted [30]. 

The values for the compressibility coefficient of helium calculated according to Eq. 
(21) agree well with the data extrapolated from the semiempirical equation in [31]; for higi~ 
pressures the discrepancies do not exceed the errors of extrapolation. However, Eq. (21) 
yields the thermodynamic functions of helium more exactly, since it does not contain the em- 
pirically determined diameters of the solid spheres [31]. 

Equation (21) is inexact for pressures that considerably exceed those studied (hundreds 
of kilobars and megabars). This is related to the incorrect determination (for ultrahigh 
pressures) of a*(T*) by Eq. (18) [32]. 

NOTATION 

Z, compressibility coefficient; T, absolute temperature, ~ P, pressure, bars; p, ~no]~ 
tensity, mole/m3; Ro, universal gas constant; B~*, BI 4*, reduced j-th virial coefflcle~t a~ 
its first quantum correction; NA, Avogadro s number; K, Boltzmann cons=ant; n, Planck coa- 
stant; m, molecular weight, kg; ~, e/k, parameters of intermolecularpotential, !0 "~:~ ~ ~nd ~K 
Oj*, reduced j-th virial coefficient for the potential of solid spheres. 

LITERATURE CITED 

i. H. N. Temperley (editor), Physics of Simple Liquids, American Elsevier (1968). 
2. J. A. Barker and D. Henderson, Annual Rev. Phys. Chem., 23~ 439 (1972). 
3. N. P. Kovalenko and I. Z. Fisher, Usp. Fiz. Nauk, 108, 209 (1972). 
4. 
5. 
6. 
7. 
8. 
9o 

i0. 
ii. 

12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

20. 
21. 
22. 
23. 
24 
25 
26 
27 
28 
29 

30. 

31. 
32. 

L. Verlet and J. J. Weis, Phys. Rev. A, 5, 939 (1972). 
J. P. Hansen and J. J. Weis, Phys. Rev., 188, 314 (1969). 
B. Pietrass, Physica, 42, 147 (1969). 
A. D. Tsykalo and A. D. Bagmet, Kholodil. Tekh. Tekhnol], No. 12 (1971). 
S. Kim, D~ Henderson, and J. A. Barker, Can~ J. Phys., 47, 99 (1969). 
J. Ram and Y. Syngh, Mol. Phys., 26, 539 (1973). 
R. E. Caligaris and J. C. Grandel, Chem. Phys., ~, 249 (1973). 
L. D. Landau and E. M. Lifshits, Statistical Physics, Addison-Wesley, Reading, Massa- 
chusetts (1958). 
D. Henderson and S. G. Davison, Proc. Nat. Acad. Sci., 54, 21 (1965). 
R. Chen, D. Henderson, and S. G. Davison, Proc. Nat. Acad. Sci., 54, 1514 (1965). 
D. Ruelle, Statistical Mechanics: Rigorous Results, W. A. Benjamin, New York (1974). 
S. Kim, Phys. Fluids, iO, 2046 (1969). 
R. M. Sevast'yanov and N. A. Zykov, Teplofiz. Vys. Temp., iO, 979 (1972). 
S. Kim and D. Henderson, Proc. Nat. Acad. Sci., 55, 706 (1966). 
S. Kim and D. Henderson, Chem. Phys. Lett., ~, 619 (1968). 
S. D. Gavrilov, in: Theses of the Fifth All-Union Conference on the Thermophysical 
Properties of Substances [in Russian] (1974), p. 119. 
J. A. Barker and D. Henderson, J. Chem. Phys., 47, 4714 (1967). 
B. Jancovici, Phys. Rev., 178, 295 (1969). 
S. D. Gavrilov, Zh. Fiz. Khim., 47, 2077 (1974). 
J. A. Sullivan and R. E. Sonntag, Cryogenics, ~, 13 (1967). 
A. L. Blancett, K. R. Hall, and F. B. Canfield, Physica, 47, 75 (1970). 
K. R. Hall and F. B. Canfield, Physica, 47, 219 (1970). 
J. A. Provine and F. B. Canfield, Physica, 52, 79 (1971). 
R. Wiebe, V. L. Gaddy, and C. Heins, J. Amer. Chem. Soc., 53, 1721 (1931). 
N. V. Tsederberg, V. N. Popov, and V. P. Petrov, Teplo~nergetika, No. 6 (1972). 
D. S. Tsiklis, V. Ya. Maslennikova, and S. Ya. Gluvka, Dokl. Akad. Nauk SSSR, 216, 719 
(1974). 
N. V. Tsederberg, V. N. Popov, and A. B. Kalenkov, in: Theses of the Fifth All-Union 
Conference on the Thermophysical Properties of Substances [in Russian] (1974), p. 89. 
S. D. Gavrilov, inzh.-Fiz. Zh., 27, 878 (1974). 
D. Henderson and J. A. Barker, Phys. Rev. A, ~, 1266 (1970). 

95 


